Answer:
c. 0.219
Explanation:
If the coin is fair, then the probability of flipping a head is 1/2 = 0.5
Therefore, we can model this as a binomial distribution:
X ~ B(n, p) where n is the number of events and p is the probability of success
Given:
X ~ B(8, 0.5)
Using a calculator:
P(X = 5) = 0.21875 = 0.219 (3 dp)
Using the formula:
![\sf P(X=x)=(n!)/((n-x)!x!)p^x(1-p)^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/ps0x23x3lgc5l71evxeutixstxysrrivid.png)
(where n is the number of events, x is the number of desired successes and p is the probability of success)
![\sf \implies P(X=5)=(8!)/((8-5)!5!)0.5^5(1-0.5)^(8-5)](https://img.qammunity.org/2023/formulas/mathematics/college/hj06adl1cz9r9jz3m6b4w9o8c8e392n40v.png)
![\sf \implies P(X=5)=(8!)/(3!5!)0.5^50.5^3](https://img.qammunity.org/2023/formulas/mathematics/college/9bzusvd6fplmu0q7pborkx1tbl2brwmzjw.png)
![\sf \implies P(X=5)=56 \cdot 0.5^8](https://img.qammunity.org/2023/formulas/mathematics/college/c2joautb96geatrs47zd7h0oa0q284le6i.png)
![\sf \implies P(X=5)=56 \cdot (1)/(256)](https://img.qammunity.org/2023/formulas/mathematics/college/xz42nj753lj60cb07s8sgc7so4dmzdgsy6.png)
![\sf \implies P(X=5)=(7)/(32)](https://img.qammunity.org/2023/formulas/mathematics/college/yfnwcz9edhyswr77j1m4tc11299etc8d9c.png)
![\sf \implies P(X=5)=0.21875](https://img.qammunity.org/2023/formulas/mathematics/college/2hhlpma9o2sdtdu4z38qfztrx06k5m0xmx.png)