31.2k views
16 votes
If the hypotenuse of a 30°-60°-90° Triangle is 10√2, find the length of the other two sides.

User Yogesh MV
by
3.3k points

1 Answer

10 votes

Let us consider a 30°-60°-90°△ABC right angled at B in which ∠C = 30⁰ and ∠A = 60⁰ with hypotenuse AC = 10√2 units.

Solution:-

In △ABC,


\longrightarrowsin ∠C =
\sf (Perpendicular)/(Hypotenuse)


\longrightarrowsin ∠C =
\sf (AB)/(AC)


\longrightarrowsin 30⁰ =
\sf (AB)/(10√(2))


\longrightarrow
\sf (1)/(2)= (AB)/(10√(2))


\longrightarrow
\sf AB = (10√(2))/(2)


\longrightarrow
\sf AB = 5√(2)\:units


\\

In △ABC,


\longrightarrowcos ∠C =
\sf (Base)/(Hypotenuse)


\longrightarrowcos ∠C =
\sf (BC)/(AC)


\longrightarrowcos 30⁰ =
\sf (BC)/(10√(2))


\longrightarrow
\sf (√(3))/(2)= (BC)/(10√(2))


\longrightarrow
\sf BC = (10√(2)* √(3))/(2)


\longrightarrow
\sf BC = (10√(2* 3))/(2)


\longrightarrow
\sf BC = (10√(6))/(2)


\longrightarrow
\sf BC = 5√(6)\: units

Thus , the length of other two sides of triangles are 5√2 and 5√6 units.

If the hypotenuse of a 30°-60°-90° Triangle is 10√2, find the length of the other-example-1
User Simon Elliott
by
3.8k points