57.9k views
5 votes
Simple true or false...

d/dx{x^3e^x]=x^3e^x(3x+2)

True or false

1 Answer

4 votes

Answer:

False.

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Factoring

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Explanation:

Step 1: Define

Identify.


\displaystyle (d)/(dx)[x^3e^x]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:
    \displaystyle (d)/(dx)[x^3e^x] = (d)/(dx)[x^3]e^x + x^3 (d)/(dx)[e^x]
  2. Derivative Rule [Basic Power Rule]:
    \displaystyle (d)/(dx)[x^3e^x] = 3x^2e^x + x^3 (d)/(dx)[e^x]
  3. Exponential Differentiation:
    \displaystyle (d)/(dx)[x^3e^x] = 3x^2e^x + x^3e^x
  4. Factor:
    \displaystyle (d)/(dx)[x^3e^x] = (x^3 + 3x^2)e^x


\displaystyle (d)/(dx)[x^3e^x] \\eq x^3e^x(3x + 2) but
\displaystyle (d)/(dx)[x^3e^x] = (x^3 + 3x^2)e^x.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Kodemi
by
4.1k points