105k views
21 votes
A triangle has vertices (1,4), (1,-2), and (-3,-2). what is the approximate perimeter of the triangle

User Vineel
by
2.9k points

1 Answer

5 votes

Answer:

  • Perimeter of Traingle is 10 + 2√5


\\

Step-by-step explanation:

Let,

  • A = (1,4)
  • B = (1,-2)
  • C = (-3,-2)


\\

To find the perimeter of the traingele with vertices of A (1,4), B(1, -2) and C(-3,-2). We have to first find the distance between each pair of points, which will give length of the sides.


\\

Using distance formula,


\\


\dashrightarrow \sf \: \: AB = \sqrt{( x_(2) - x_(1))^2 + (y_(2) - y_(1))^2} \\ \\


\dashrightarrow \sf \: \: AB = \sqrt{{ {(1 - 1)}^(2) } + {( - 2 - 4)}^(2) } \\ \\


\dashrightarrow \sf \: \: AB = \sqrt{0 + {( - 6)}^(2) } \\ \\


\dashrightarrow \sf \: \: AB = √(36) \\ \\


\pink{ \dashrightarrow\sf \: \: {\underline{AB = 6 }}}\\ \\ \\


\dashrightarrow \sf \: \: BC = \sqrt{{ {( - 3 - 1)}^(2) } + {( - 2 + 2)}^(2) } \\ \\


\dashrightarrow \sf \: \:BC = \sqrt{ {( - 4)}^(2) + 0} \\ \\


\dashrightarrow \sf \: \:BC = √(16) \\ \\


\pink{ \dashrightarrow \sf \: \:{ \underline{ BC = 4 }}}\\ \\ \\


{\dashrightarrow { \sf \: \: {AC = \sqrt{{ {( - 3 - 1)}^(2) } + {(2 - 4)}^(2)}}} } \\ \\


\dashrightarrow \sf \: \:AC = \sqrt{ {( - 4)}^(2) + {( - 2)}^(2) } \\ \\


\dashrightarrow\sf \: \: AC = √(16 + 4) \\ \\


\dashrightarrow \sf \: \:AC = √(20) \\ \\


\pink{ \dashrightarrow \sf \: \: { \underline{AC = 2 √(5) }}}


\\

Now,


\\


\dashrightarrow\sf \: \: Perimeter = AB + BC + AC \\ \\


\dashrightarrow\sf \: \: 6 + 4 + 2√5 \\ \\


\dashrightarrow\sf \: \: {\pink{ \underline{ \boxed { \pmb{ \sf{ \: 10 + 2√5 \: \: }}}}}}


\\

Hence,

  • Perimeter of Traingle is 10 + 2√5
User Miller Medeiros
by
3.4k points