67.9k views
6 votes
If


\\ \rm\Rrightarrow 4^x-4^(x-1)=24,

then (2x)^x equals

(a) 5√5

(b) √5

Note:-

Make sure you include all steps.

Proper explanation is mandatory .


Spams/irrelevant/wrong/copied answers will be deleted on the spot so don't waste your precious time here by spamming .

Instead provide good explanation and correct answer


2 Answers

9 votes

Answer:

Explanation:

Let
4^(x)=y, then we obtain that:


4^(x)-4^(x-1)=24\rightarrow y-(y/4)=24 \rightarrow (3y)/(4)=24

So, we can get:
3y=96 \rightarrow y = 96/3 = 32

Now, because
y=4^(x)=32, we can obtain the value of x as follows:


4^(x)=(2^(2))^(x)=(2^(5)) \rightarrow 2x = 5 \rightarrow x=5/2

Then
(2x)^(x)=(2(5/2))^(5/2)=5^(5/2)=\sqrt{5^(5)}=25\sqrt 5

There is no answer in your question.

User Warren Stringer
by
4.3k points
8 votes


\\ \sf\Rrightarrow 4^x-4^(x-1)=24


\\ \sf\Rrightarrow 4^x-4^x4^(-1)=24


\\ \sf\Rrightarrow 4^x(1-0.25)=24


\\ \sf\Rrightarrow 4^x(0.75)=24


\\ \sf\Rrightarrow 4^x=32


\\ \sf\Rrightarrow 2^(2x)=2^5


\\ \sf\Rrightarrow 2x=5


\\ \sf\Rrightarrow (2x)^x=(5)^x

User Benmmurphy
by
4.2k points