Answer:
As Per Provided Information
Radius of sector 5 units
Area of sector 18.751 square units
we have been asked to determine the measure of the central angle .
Using Formulae
![\underline{ \boxed{\bf\pink{Area_((Sector)) \: = \cfrac{ \theta * \pi {r}^(2) }{360 {}^( \circ)}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zur1yt0kb6nba0dbr8dvuicks44j0f0ufp.png)
Substituting the given value and let's solve it
![\longrightarrow \sf \: 18.751 = \cfrac{ \theta * 3.14 * {5}^(2) }{360} \\ \\ \ \\ \longrightarrow \sf \: 18.751 * 360 = { \theta * 3.14 * 25} \\ \\ \\ \longrightarrow \sf \: 6750.36 \: = \theta \: * 78.5 \\ \\ \\ \longrightarrow \sf \theta \: = \: \cfrac{6750.36}{78.5} \\ \\ \\ \longrightarrow \sf \theta \: = \cancel\cfrac{6750.36}{78.5} \\ \\ \\ \longrightarrow \sf \theta \: = 85.99 {}^( \circ) \\ \\ \\ \longrightarrow \sf \theta \: = \: \approx \: 86 {}^( \circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fvmtk6e8q886sb4spu4ulzah6dl3zyr1dp.png)
Therefore,
- Measure of central angle is 86°