347,268 views
38 votes
38 votes
Help! 100 pts

HelpHelpHelpHelpHelpHelpHelpHelpHelpHelpHelp Help Help Help

Help! 100 pts HelpHelpHelpHelpHelpHelpHelpHelpHelpHelpHelp Help Help Help-example-1
User Gavin Wood
by
2.5k points

2 Answers

23 votes
23 votes

Answer:


\boldsymbol{ (a , b , c ) = (0,-4,4)}

Explanation:

We would like to solve the following system of equations ,


\begin{cases} 2a + b + c = 0\\2b + c + a = -4 \\ 2c + a + b = 4 \end{cases}

Firstly lets number the equations as ,


\begin{cases} 2a + b + c = 0 \dots (i)\\2b + c + a = -4 \dots (ii)\\ 2c + a + b = 4 \dots (iii)\end{cases}

Again , we can rewrite the first equation as , equations as ;


\longrightarrow c = -2a - b \dots (iv) \\

Now , substitute the value of equation (iv) in equation (ii) and (iii) .


\longrightarrow 2b + c + a = -4 \\


\longrightarrow 2b + (-2a - b) + a = -4\\


\longrightarrow 2b - 2a - b + a = -4\\


\longrightarrow (2b - b )+ (a - 2a) = -4\\


\longrightarrow b - a = -4 \dots (v)

And ,


\longrightarrow 2(-2a - b ) + a + b = 4\\


\longrightarrow -4a - 2b + a + b = 4\\


\longrightarrow (-4a + a )+(-2b + b) =4\\


\longrightarrow -3a - b = 4 \dots (vi)

Now consider ,


\begin{cases}b - a =-4\\ -3a - b =4\end{cases}

On adding these two equations, we have ;


\longrightarrow b - a -3a - b = -4+4\\


\longrightarrow -4a =0\\


\longrightarrow \underline{\underline{\boldsymbol{ a = 0}}}{}

Now substitute this value in equation (v) ,


\longrightarrow b - 0= -4\\


\longrightarrow \underline{\underline{\boldsymbol{ b = -4}}}{}

Finally substitute the values of a and b in equation (iv) , we have ;


\longrightarrow c = -2a - b \\


\longrightarrow c = -2(0)-(-4) \\


\longrightarrow c = 0+4\\


\longrightarrow \underline{\underline{\boldsymbol{ c = 4 }}}{}

And we are done !

User MG Lolenstine
by
2.5k points
26 votes
26 votes

Answer:

  • (a, b, c) = (0, -4, 4)

Explanation:


{\longrightarrow{\qquad \sf \ 2a + b + c = 0\: \dashrightarrow \sf \: (i)}}


{\longrightarrow{\qquad \sf \ 2b + c + a = - 4\dashrightarrow \sf \: (ii)}}


{\longrightarrow{\qquad \sf \ 2c + a + b = 4\: \dashrightarrow \sf \: (iii)}}

Adding equation (i), (ii) and (iii) :


{\longrightarrow{\qquad \sf \ 2a + b + c + (2b + c + a) + (2c + a + b)= 0 + ( - 4) + 4}}


{\longrightarrow{\qquad \sf \ 3a + 3b + 3c= 0 }}


{\longrightarrow{\qquad \sf \ 3(a + b + c)= 0 }}


{\longrightarrow{\qquad \sf \ a + b + c= 0 \: \dashrightarrow \: (iv)}}

Now, (i) – (ii) :


{\longrightarrow{\qquad \sf 2a + b + c - (2b + c + a) = 0 - ( - 4)\: }}


{\longrightarrow{\qquad \sf 2a + b + c - 2b - c - a = 0 + 4\: }}


{\longrightarrow{\qquad \sf \: a - b= 4\:\dashrightarrow \: (v) }}

Again, (i) – (iii) :


{\longrightarrow{\qquad \sf 2a + b + c - (2c + a + b) = 0 - 4\: }}


{\longrightarrow{\qquad \sf 2a + b + c - 2c - a - b = - 4\: }}


{\longrightarrow{\qquad \sf \: a - c= - 4\:\dashrightarrow \: (vi) }}

Now, (v) + (vi) :


{\longrightarrow{\qquad \sf \: a - b + (a + c)= 4 - 4\:}}


{\longrightarrow{\qquad \sf \: 2a - b - c= 0\:\dashrightarrow \: (vii)}}

Now, (iv) + (vii) :


{\longrightarrow{\qquad \sf \ a + b + c + (2a - b - c)= 0 + 0}} \:


{\longrightarrow{\qquad \sf \ 3a= 0}} \:


{\longrightarrow{\qquad \bf \ a= 0}} \:

Now, substituting the value of a in equation (v) :


{\longrightarrow{\qquad \sf \: a - b= 4\:}}


{\longrightarrow{\qquad \sf \: 0 - b= 4\:}}


{\longrightarrow{\qquad \bf \: b= - 4\: }}

Now, substituting the value of a in equation (vi) :


{\longrightarrow{\qquad \sf \: a - c= - 4\:}}


{\longrightarrow{\qquad \sf \: 0 - c= - 4\:}}


{\longrightarrow{\qquad \bf \: c= 4\:}}

User Doronz
by
2.9k points