Answer:
![5x^2 + 3x - 2](https://img.qammunity.org/2022/formulas/mathematics/college/49xdotdywb6korbzitovzpx5onnd226127.png)
This answer is correct because I simplified using like terms.
Explanation:
Subtracting Polynomials
They key to subtract, multiply, add, and divide polynomials is by using like terms. Like terms are values with the same bases. For example :
and
are like terms because they have the base
![ax](https://img.qammunity.org/2022/formulas/mathematics/college/cls7ajs6y35nhrzhpm3pdsfnt9mxe74hfs.png)
Step 1: Move like terms together
First, let's remove all parenthesis:
![(3x^2 + 9x-6)-(2x^2-4x^2+6x-4)\\\\= 3x^2+9x-6-2x^2+4x^2-6x+4](https://img.qammunity.org/2022/formulas/mathematics/college/z954gzqks5jonmb7yd56nps4copc5q2uha.png)
Now let's move all like terms together:
![3x^2+9x-6-2x^2+4x^2-6x+4= \\3x^2-2x^2+4x^2+9x-6x-6+4](https://img.qammunity.org/2022/formulas/mathematics/college/1v3wbkorjsfm3ber0x04qw5xck1y643xl2.png)
Step 2: Simplify
Now we can add and subtract the like terms like we do in any other problem
![3x^2-2x^2+4x^2+9x-6x-6+4 = \\5x^2+3x-2](https://img.qammunity.org/2022/formulas/mathematics/college/e25o2anj679xii1llx4i59yc2kwclf8xx2.png)
Step 3: Explaining your answer
Just say: "This answer is correct because I simplified using like terms"
-Chetan K