90.7k views
0 votes
Find the value of X in the triangle shown in the image

Find the value of X in the triangle shown in the image-example-1

2 Answers

7 votes

Answer:

C
\displaystyle x = 15

Step-by-step Step-by-step explanation:

Use the Pythagorean Theorem to define the hypotenuse:


\displaystyle a^2 + b^2 = c^2 \\ \\ 12^2 + 9^2 = x^2 \hookrightarrow 144 + 81 = x^2 \hookrightarrow √(225) = √(x^2) \\ \\ \boxed{15 = x}

I am joyous to assist you at any time.

User Demion
by
4.6k points
1 vote


\huge \underline\text{ Hello There}


\text{We know, Pythagoras Theorem}


\implies \text{ (Hypotenuse)²= (Base)² + (Altitude)²}


\text{Here, \red{Hypotenuse}= x, \red{Base}= 9, \red{Altitude}= 12}


\underline \text{To Find, } \text{Value of'x'}


\huge \underline\text \red {Solution}


(x) {}^(2) = (9) {}^(2) + ({12})^(2) \\ \implies (x) { }^(2) = 81 + 144 \\ \implies (x) {}^(2) = 225 \\ \implies x = √(225) \\ \implies x = 15


\tt{So \: The \: Value \: of'x'= 15}


\bold{\therefore Hypotenuse= 15}


\text{Correct Opt. C= x =15}

Hope this helps

User Rpascal
by
4.1k points