Answer: Obtuse
========================================================
Step-by-step explanation:
We have a triangle with these side lengths
Computing a^2+b^2 gets us
a^2+b^2 = 18^2+22^2 = 808
Compare this to c^2
c^2 = 29^2 = 841
Because 808 < 841, this means a^2+b^2 < c^2
-------------------
We have three cases:
- If a^2+b^2 > c^2, then the triangle is acute
- If a^2+b^2 = c^2, then we have a right triangle
- If a^2+b^2 < c^2, then the triangle is obtuse
For more information, check out the converse of the Pythagorean Theorem.