4) d
let's firstly convert the mixed fractions to improper fractions, and then proceed
![\stackrel{mixed}{4(3)/(8)}\implies \cfrac{4\cdot 8+3}{8}\implies \stackrel{improper}{\cfrac{35}{8}}~\hfill \stackrel{mixed}{1(1)/(4)}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}} \\\\[-0.35em] ~\dotfill\\\\ -4(3)/(8)-\left( -1(1)/(4) \right)\implies -\cfrac{35}{8}-\left( -\cfrac{5}{4} \right)\implies -\cfrac{35}{8}+\cfrac{5}{4}\implies \cfrac{-(1)(35)~~ +~~(2)(5)}{\underset{\textit{using this as LCD}}{8}}](https://img.qammunity.org/2022/formulas/mathematics/college/d3115f54ideyo70hz4xuxkp2duwv1ji5ex.png)
![\cfrac{-35+10}{8}\implies -\cfrac{25}{8}\implies -3(1)/(8)](https://img.qammunity.org/2022/formulas/mathematics/college/6onuyn91pq5x8i1af7z0n75rxpeuloy0f5.png)
5)
hmmm we can pick any of those %, hmmm let's use 18%, keeping in mind that the whole amount is really the 100% and that's say "x", hmmm we know the 18% of "x" is $5.87.
![\begin{array}{ccll} \%&amount\\ \cline{1-2} 18&5.87\\ 100&x \end{array}\implies \cfrac{18}{100}=\cfrac{5.87}{x}\implies \cfrac{9}{50}=\cfrac{5.87}{x} \\\\\\ 9x = 293.5\implies x = \cfrac{293.5}{9}\implies x = 32.6\overline{1}\qquad \textit{about 32 bucks and 61 cents}](https://img.qammunity.org/2022/formulas/mathematics/college/x3wuc2mvyxpwfls3hn6e5xswv8dd9t52sv.png)