73.5k views
0 votes
Sketch the graph of y = 5 sin 2x° + 12


User Ludolfyn
by
4.3k points

1 Answer

9 votes

Function: y = 5 sin (2(x))+ 12

Find y-intercept:

y = 5 sin 2(0)+ 12

y = 12


\sf Y\:Intercepts}:\:\left(0,\:12\right)

→ Formula for maximum: M = A + |B|

Maximum:

12 + |5|

17

When y = 17


\rightarrow \sf 17 = 5 sin (2(x))+ 12


\rightarrow \sf \sf 5 sin (2(x)) = 5


\rightarrow \sf sin (2(x)) = 1


\rightarrow \sf 2x = sin^(-1)(1)


\rightarrow \sf 2x = 90^(\circ \:), \ \ 450^(\circ \:)


\rightarrow \sf x = 45^(\circ \:), \ \ 225^(\circ \:)

maximum: ( 45° , 17 ), (225° , 17), .....

==========================================================

→ Formula for minimum: m = A ‐ |B|

Minimum:

12 - |5|

7

When y = 7


\rightarrow \sf 7 = 5 sin (2(x))+ 12


\rightarrow \sf 5 sin (2(x)) = -5


\rightarrow \sf 2(x) = sin^(-1)(-1)


\rightarrow \sf x = -45^(\circ \:) , \ \ 135^(\circ \:)

minimum: ( -45°,7), (135°, 7), .....

Repeat the same process for finding more values on the x-axis, or just follow the trend of the curve from the points found and sketch the graph easily.


\sf Domain\:\left(-\infty \: < x < \infty )


\sf Range : 7\le \:f\left(x\right)\le \:17

Sketched below:

Sketch the graph of y = 5 sin 2x° + 12 ​-example-1
User Mutiemule
by
4.8k points