Answer:
![y=14x^2+x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/4yfjoz5tj7yyl9dzgu3fccbqic167u2tbo.png)
Explanation:
If the zeros of the polynomial are -1/2 and 3/7 then:
![\implies x=-\frac12](https://img.qammunity.org/2023/formulas/mathematics/high-school/u1qzq82wbro8saa63smnihxyvuu96y1utf.png)
Add 1/2 to both sides:
![\implies x+\frac12=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/hrzso7lccnakgixg3lmzyy1z81z1j0zwlc.png)
Multiply both sides by 2:
![\implies 2x+1=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/z92ofsb1hnhq6xdgmo6sptsold9a9q9tz8.png)
![\implies x=\frac37](https://img.qammunity.org/2023/formulas/mathematics/high-school/120yfghzw5izvsf2cpze9im19mrock4j2s.png)
Subtract 3/7 from both sides:
![\implies x-\frac37=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/7kptvi2e3qiaypv3mmef9hnjyqg7k3rf98.png)
Multiply both sides by 7:
![\implies 7x-3=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/9nuu8r6mxu60d298851venkarekrcg20e8.png)
Therefore, the factored form of the polynomial is
![y=(2x+1)(7x-3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/15ktafdm2hwv6nry6wc4i248cm9a4whgl4.png)
Expanding the brackets so that the polynomial is in standard form:
![\implies y=14x^2-6x+7x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/3pd0pwk8xpfebxct9g2yur6seam75294sx.png)
![\implies y=14x^2+x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/hjg9rablzl0vshpqmf7g0g4rmz1c6yfj21.png)