48.6k views
0 votes
Factorise: x^4– 5x^2 + 4​

User WPFNoob
by
7.5k points

2 Answers

10 votes

Answer:

(x - 2)(x - 1)(x + 1)(x + 2)

Explanation:


{x}^(4) - 5 {x}^(2) + 4 \\ \\ = {x}^(4) - 4 {x}^(2) - {x}^(2) + 4 \\ \\ = {x}^(2) ( {x}^(2) - 4) - 1( {x}^(2) - 4) \\ \\ = ( {x}^(2) - 4)( {x}^(2) - 1) \\ \\ = (x + 2)(x - 2)(x + 1)(x - 1) \\ \\ = (x - 2)(x - 1)(x + 1)(x + 2)

User Maksee
by
7.8k points
2 votes

Answer:


(x+1)(x-1)(x+2)(x-2)

Explanation:

To factorise
x^4-5x^2+4 :

Let
x^2=u


\implies x^4-5x^2+4=u^2-5u+4

Now factorise
u^2-5u+4


\textsf{for} \ ax^2+bx+c \ \textsf{find} \ v, w \ \textsf{such that} \ v \cdot w=a \cdot c \ \textsf{and} \ v+w=b


\textsf{and group into} \ (ax^2+vx)+(wx+c)


\implies v=-1, w=-4


\implies u^2-u-4u+4

Break into groups


\implies (u^2-u)+(-4u+4)

Factor each parentheses:


\implies u(u-1)-4(u-1)

Factor out common term
(u-1):


\implies (u-1)(u-4)

Substitute back
u=x^2 :


\implies (x^2-1)(x^2-4)

Factor both parentheses using the Difference of Two Squares:
a^2-b^2=(a+b)(a-b)


\implies (x+1)(x-1)(x+2)(x-2)

Therefore, the factorisation of
x^4-5x^2+4 is


(x+1)(x-1)(x+2)(x-2)

User Tagyoureit
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories