48.6k views
0 votes
Factorise: x^4– 5x^2 + 4​

User WPFNoob
by
3.6k points

2 Answers

10 votes

Answer:

(x - 2)(x - 1)(x + 1)(x + 2)

Explanation:


{x}^(4) - 5 {x}^(2) + 4 \\ \\ = {x}^(4) - 4 {x}^(2) - {x}^(2) + 4 \\ \\ = {x}^(2) ( {x}^(2) - 4) - 1( {x}^(2) - 4) \\ \\ = ( {x}^(2) - 4)( {x}^(2) - 1) \\ \\ = (x + 2)(x - 2)(x + 1)(x - 1) \\ \\ = (x - 2)(x - 1)(x + 1)(x + 2)

User Maksee
by
4.1k points
2 votes

Answer:


(x+1)(x-1)(x+2)(x-2)

Explanation:

To factorise
x^4-5x^2+4 :

Let
x^2=u


\implies x^4-5x^2+4=u^2-5u+4

Now factorise
u^2-5u+4


\textsf{for} \ ax^2+bx+c \ \textsf{find} \ v, w \ \textsf{such that} \ v \cdot w=a \cdot c \ \textsf{and} \ v+w=b


\textsf{and group into} \ (ax^2+vx)+(wx+c)


\implies v=-1, w=-4


\implies u^2-u-4u+4

Break into groups


\implies (u^2-u)+(-4u+4)

Factor each parentheses:


\implies u(u-1)-4(u-1)

Factor out common term
(u-1):


\implies (u-1)(u-4)

Substitute back
u=x^2 :


\implies (x^2-1)(x^2-4)

Factor both parentheses using the Difference of Two Squares:
a^2-b^2=(a+b)(a-b)


\implies (x+1)(x-1)(x+2)(x-2)

Therefore, the factorisation of
x^4-5x^2+4 is


(x+1)(x-1)(x+2)(x-2)

User Tagyoureit
by
3.9k points