229k views
1 vote
For questions 3 - 6, find F'(x), the inverse of F(x).

3. F(x) = x-10

4. F (x) = x/6 + 3

5. F(x) = 3x + 7

6. F(x) = 8x

1 Answer

4 votes

Answer:

3) f'(x) = x + 10

4) f'(x) = 6x - 18

5)
\displaystyle\mathsf{f'(x)=(1)/(3)x-(7)/(3)} or
\displaystyle\mathsf{f'(x)=(x - 7)/(3)}

6) f'(x) = ⅛x or
\displaystyle\mathsf{f'(x)=(x)/(8)}

Explanation:

3. f(x) = x - 10

Step 1: In order to find the inverse function of f(x) = x - 10, start by replacing f(x) with y.

y = x - 10

Step 2: Switch x and y:

x = y - 10

Step 3: Add 10 to both sides to isolate y:

x + 10 = y - 10 + 10

x + 10 = y

Step 4: Replace y with f'(x):

f'(x) = x + 10 ⇒ This is the inverse function of f(x).

4.
\displaystyle\mathsf{f(x)=\:(x)/(6)\:+\:3}

Replace f(x) with y:


\displaystyle\mathsf{y=\:(x)/(6)\:+\:3}

Switch x and y:


\displaystyle\mathsf{x=\:(y)/(6)\:+\:3}

Subtract 3 from both sides:


\displaystyle\mathsf{x-3=\:(y)/(6)\:+\:3-3}


\displaystyle\mathsf{x-3=\:(y)/(6)}

Multiply both sides by 6 to isolate y:


\displaystyle\mathsf{6(x-3)=\:(y)/(6)(6)}

6x - 18 = y

Replace y with f'(x):

f'(x) = 6x - 18 ⇒ This is the inverse function of f(x).

5. f(x) = 3x + 7

Replace f(x) with y:

y = 3x + 7

Switch x and y:

x = 3y + 7

Subtract 7 from both sides:

x - 7 = 3y + 7 - 7

x - 7 = 3y

Multiply both sides by :

⅓(x - 7) = 3y (⅓)


\displaystyle\mathsf{(1)/(3)x-(7)/(3)=y}

Replace y with f'(x):


\displaystyle\mathsf{f'(x)=(1)/(3)x-(7)/(3)} or
\displaystyle\mathsf{f'(x)=(x - 7)/(3)} ⇒ This is the inverse function of f(x).

6. f(x) = 8x

Replace f(x) with y:

y = 8x

Switch x and y:

x = 8y

Multiply both sides by :

⅛(x) = ⅛(8y)

⅛x = y or
\displaystyle\mathsf{(x)/(8)=y}

Replace y with f'(x):

f'(x) = ⅛x or
\displaystyle\mathsf{f'(x)=(x)/(8)} ⇒ This is the inverse function of f(x).

User Anubhava
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories