156k views
4 votes
Solve this quadratic function

Solve this quadratic function-example-1

1 Answer

5 votes


\textit{vertex of a vertical parabola, using coefficients} \\\\ y=\stackrel{\stackrel{a}{\downarrow }}{-1}x^2\stackrel{\stackrel{b}{\downarrow }}{+3}x\stackrel{\stackrel{c}{\downarrow }}{+8} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left( -\cfrac{3}{2(-1)}~~,~~8-\cfrac{3^2}{4(-1)} \right)\implies \left( \cfrac{3}{2}~~,~~ 8+\cfrac{9}{4}\right)\implies \left( \cfrac{3}{2}~~,~~ \cfrac{41}{4}\right)

now, for the solutions, or namely the x-intercepts, we simply set y = 0 and solve for "x", now this one doesn't factor into integers nicely, so we'll need to use the quadratic formula to get them.


~~~~~~~~~~~~\textit{quadratic formula} \\\\ 0=\stackrel{\stackrel{a}{\downarrow }}{-1}x^2\stackrel{\stackrel{b}{\downarrow }}{+3}x\stackrel{\stackrel{c}{\downarrow }}{+8} \qquad \qquad x= \cfrac{ - b \pm \sqrt { b^2 -4 a c}}{2 a} \\\\\\ x=\cfrac{ - 3 \pm \sqrt { 3^2 -4(-1)(8)}}{2(-1)}\implies x = \cfrac{-3\pm√(9+32)}{-2}\implies x = \cfrac{3\mp√(41)}{2}


x = \begin{cases} \cfrac{3-√(41)}{2}\\[2em] \cfrac{3+√(41)}{2} \end{cases}\qquad \leftarrow \qquad na mely\textit{ solutions or zeros or x-intercepts}

User Andrew Willems
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories