133k views
0 votes
If sinA=1/2 then find sinA +cos A


2 Answers

5 votes

Explanation:

Given sinA – cosA = 1/2 squaring on both the sides, we get (sinA – cosA)2 = (1/2)2 ⇒ sin2A + cos2A – 2sinA cosA = 1/4 ⇒ 1 – 2sinA cosA = 1/4 ⇒ 1 – (1/4) = 2sinA cosA ⇒ 2sinA cosA = 3/4 ∴ sinA cosA = 3/8 → (1) (sinA + cosA)2 = (sinA – cosA)2 + 4sinA cosA = (1/2)2 + 4(3/8) = (1/4) + (3/2) = 7/4 (sinA + cosA) = √(7/4) = (√7)/2 .

User Optimworks
by
8.7k points
2 votes

Given that,


\sin A = \frac 12\\\\ \implies \sin^2 A = \frac 14\\\\\ \implies 1-\cos^2 A = \frac 14\\\\\ \implies \cos^2 A = 1 - \frac 14 = \frac 34\\\\\ \implies \cos A = \pm \frac{\sqrt 3}2\\\\\text{Case 1:}\\\\\sin A + \cos A = \frac 12 + \frac{\sqrt 3}2 = \frac{1 + \sqrt 3}2\\\\\text{Case 2:}\\\\\sin A + \cos A = \frac 12 +\left(- \frac{\sqrt 3}2\right) = \frac 12 - \frac{\sqrt 3}2=\frac{1 - \sqrt 3}2

User Engtuncay
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories