The boundary of S is the unit circle C in the (x, y) plane with equation x² + y² = 1, which we can parameterize by
r(t) = x(t) i + y(t) j + z(t) k
with 0 ≤ t ≤ 2π, where
x(t) = cos(t)
y(t) = sin(t)
z(t) = 0
so that
dr = (dx/dt i + dy/dt j + dz/dt k) dt = (sin(t) i - cos(t) j) dt
By Stokes' theorem, the surface integral of the curl of F across S is equal to the line integral of F along C :
![\displaystyle \iint_S \mathrm{curl} F \cdot d\vec s = \int_C \vec F \cdot d\vec r](https://img.qammunity.org/2022/formulas/sat/high-school/7i1r2fdu27juvzsuf8vjzc1mp7vm75vy3b.png)
We have
![\vec F(x(t), y(t), z(t)) = \sin^2(t) \, \vec\jmath + \sin(t) \cos(t) \, \vec k](https://img.qammunity.org/2022/formulas/sat/high-school/y8hf5oxrpp016c998lbsarnno7zjn7albw.png)
![\implies \vec F \cdot d\vec r = -\sin^2(t)\cos(t) \, dt](https://img.qammunity.org/2022/formulas/sat/high-school/f2khykkoufi2uweytyph4wnkqya6i7bec7.png)
so the line integral is
![\displaystyle \int_C \vec F \cdot d\vec r = - \int_0^(2\pi) \sin^2(t) \cos(t) \, dt](https://img.qammunity.org/2022/formulas/sat/high-school/slch814imk1p5uwvk529wdoggb2oi35euv.png)
Substitute u = sin(t) and du = cos(t) dt :
![\displaystyle \int_C \vec F \cdot d\vec r = - \int_0^0 u^2 \, du = \boxed{0}](https://img.qammunity.org/2022/formulas/sat/high-school/isa6jnnl8w97i42ixc8e2801zijw9skl04.png)