227k views
5 votes
Use a system of equations to find the partial fraction decomposition of the rational expression. Solve the system using matrices.


(3x ^(2) + 3x - 2 )/((x + 1)^(2) (x - 1)) = (a)/(x + 1) + (b)/(x - 1) + (c)/((x + 1)^(2) )
A=
B=
C=​

User Emma Assin
by
8.7k points

2 Answers

4 votes

Combine the fractions on the left with a common denominator:


\frac a{x+1} + \frac b{x-1} + \frac c{(x+1)^2} = (a(x+1)(x-1) + b(x+1)^2 + c(x-1))/((x-1)(x+1)^2)

It follows that


3x^2+3x-2 = a(x+1)(x-1) + b(x+1)^2 + c(x-1)

Expand the right side and collect like powers of x :


3x^2+3x-2 = a(x^2-1) + b(x^2+2x+1) + c(x-1)


3x^2+3x-2 = (a+b)x^2 + (2b + c)x -a +b - c

Then we have the system of equations


\begin{cases}a+b=3\\2b+c=3\\-a+b-c=-2\end{cases}

or in matrix form,


\begin{bmatrix}1&1&0\\0&2&1\\-1&1&-1\end{bmatrix} \begin{bmatrix}a\\b\\c\end{bmatrix} = \begin{bmatrix}3\\3\\-2\end{bmatrix}

Compute the determinant of the coefficient matrix:


\det\begin{bmatrix}1&1&0\\0&2&1\\-1&1&-1\end{bmatrix} = -4

Then the inverse of the coefficient matrix is equal 1/det times the adjugate of the coefficient matrix (a.k.a the transpose of the cofactor matrix):


\begin{bmatrix}1&1&0\\0&2&1\\-1&1&-1\end{bmatrix}^(-1) = \frac1{-4} \begin{bmatrix}-3 & -1 & 2 \\ 1 & -1 & -2 \\ 1 & -1 & 2\end{bmatrix}^\top = -\frac14 \begin{bmatrix}3&-1&-1\\1&1&1\\-2&2&-2\end{bmatrix}

Multiply both sides of the equation by the inverse :


\begin{bmatrix}a\\b\\c\end{bmatrix} = -\frac14 \begin{bmatrix}3&-1&-1\\1&1&1\\-2&2&-2\end{bmatrix} \begin{bmatrix}3\\3\\-2\end{bmatrix} = \begin{bmatrix}2\\1\\1\end{bmatrix}

So, we have a = 2 and b = c = 1, and the partial fraction decomposition is


(3x^2+3x-2)/((x+1)^2(x-1)) = \frac 2{x+1} + \frac 1{x-1} + \frac 1{(x+1)^2}

User Timothy Vogel
by
8.8k points
3 votes

Answer:

  • A = 2
  • B = 1
  • C = 1

Explanation:

One can solve for a, b, c a little more directly than using a system of 3 equations.

If we multiply the rational expression by (x+1)², we get ...

(3x² +3x -2)/(x -1) = (x+1)²(a/(x+1) +b/(x-1)) +c

Evaluating this for x = -1 gives ...

(3(-1)² +3(-1) -2)/(-1 -1) = c

-2/-2 = 1 = c

Similarly, multiplying by (x -1) gives ...

(3x² +3x -2)/(x +1)² = (x -1)(a/(x +1) +c/(x +1)²) + b

Evaluating this for x = 1 gives ...

(3·1² +3·1 -2)/(1 +1)² = b

4/4 = 1 = b

Now, we need to find the value of 'a'. The identity will hold true for any value of x, so we can see what happens when we substitute x=0. We can use the values of 'b' and 'c' that we found above.

(3·0² +3·0 -2)/((0 +1)²(0 -1)) = a/(0 +1) +1/(0 -1) +1/(0 +1)²

-2/-1 = a -1 +1 ⇒ a = 2

_____

System of equations solution

When the terms of the right-side expansion are combined, the numerator of the result is ...

a(x +1)(x -1) +b(x +1)^2 +c(x -1) = (a+b)x² +(2b+c)x +(-a+b-c) ≡ 3x² +3x -2

Equating the coefficients gives the system of equations whose augmented matrix is:


\left[\begin{array}c1&1&0&3\\0&2&1&3\\-1&1&-1&-2\end{array}\right]

Transforming this to reduced row-echelon form using any of a variety of available tools gives ...


\left[\begin{array}ccc1&0&0&2\\0&1&0&1\\0&0&1&1\end{array}\right]

which tells you the solution is (A, B, C) = (2, 1, 1).

User Ravnur
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories