148k views
2 votes
What are the roots of the equation 16x² + 16x + 5 = 0 in simplest a + bi form?​

User Chiragjn
by
3.6k points

2 Answers

1 vote

Answer:

Below in bold.

Explanation:

Using the quadratic formula :

roots = [-16 +/-√(16^2 - 4*16*5)] / (2*16)

= -0.5 +/- √(-64) /32

= -0.5 +/- 8i/32

= -0.5 + 0.25i and -0.5 - 0.25i

User Matteo Pagliazzi
by
3.6k points
6 votes


\sf\longmapsto 16x^2+16x+5=0


\sf\longmapsto x=(-b\pm√(b^2-4ac))/(2a)


\sf\longmapsto x=(-16\pm√(16^2-4(16)(5)))/(2(16))


\sf\longmapsto x=(-16\pm√256-320)/(32)


\sf\longmapsto x=(-16\pm√-64)/(32)


\sf\longmapsto x=(-16\pm8i)/(32)


\sf\longmapsto x=(-2\pm i)/(4)


\sf\longmapsto x=(-1)/(2)\pm(1)/(4)i

User Gwell
by
3.6k points