Answer:
0.8041
Step-by-step explanation:
0.8041
We know that
μ=72 and σ=5
and P(65<X<78)
We can determine the Z value as (X-μ)/σ
P( 65<X<78 )=P( 65-72< X-μ<78-72)
P((65-72)/5 < Z < (78-72)/5)P((65−72)/5<Z<(78−72)/5)
P(65 < X < 78 )=P(-1.4 < Z < 1.2)P(65<X<78)=P(−1.4<Z<1.2)
To fine the Z values:
P (-1.4 < Z < 1.2 )=P ( Z < 1.2 )-P (Z < -1.4 )P(−1.4<Z<1.2)=P(Z<1.2)−P(Z<−1.4)
From the standard normal tables:
P (Z < 1.2 )=0.8849P(Z<1.2)=0.8849
to find P ( Z<-1.4)
P ( Z < -a)=1-P ( Z < a )P(Z<−a)=1−P(Z<a)
From the standard normal tables:
P ( Z < -1.4)=1-P ( Z < 1.4 )=1-0.9192=0.0808P(Z<−1.4)=1−P(Z<1.4)=1−0.9192=0.0808
Therefore
P(-1.4 < Z < 1.2 )=0.8041P(−1.4<Z<1.2)=0.8041
P (65 < X < 78)=0.8041P(65<X<78)=0.8041