157k views
0 votes
12 ≤ 4n < 28

SOLVE THE COMPOUND INEQUALITY​

2 Answers

6 votes


\sf \: 12 ≤ 4n < 28

  • Divide all parts by 4


\sf \longmapsto (12)/(4)≤ (4n)/(4) < (28)/(4)


\sf \longmapsto3≤n<7

Result:


\boxed{ \sf 3 \leqslant n<7}

  • Number line attached
12 ≤ 4n < 28 SOLVE THE COMPOUND INEQUALITY​-example-1
User Tameeka
by
3.9k points
6 votes


▪▪▪▪▪▪▪▪▪▪▪▪▪&nbsp; {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪


\boxed{ \boxed{3 \leqslant n < 7}}

The equivalent expression is ~


\large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}

Let's solve ~


  • 12 \leqslant 4n < 28

Now divide each term with 4


  • 12 / 4 \leqslant 4n / 4 < 28 / 4


  • 3 \leqslant n < 7

User PSN
by
4.4k points