53.2k views
5 votes
Silver can be plated out of a solution containing Ag+ according to the half-reaction

Ag+(aq)+e−→Ag(s)


How much time (in minutes) does it take to plate 19 g of silver using a current of 3.4 A ?

User Troy Brant
by
3.3k points

1 Answer

3 votes

Answer:

Approximately
83 minutes.

Step-by-step explanation:

Look up the relative atomic mass of
\rm Ag:
M({\rm Ag}) = 107.868\; \rm g \cdot mol^(-1).
\begin{aligned}Q &= e\, (n(e)) \\ &\approx 1.602 * 10^(-19)\; \rm C * 1.06 * 10^(23) \\ &\approx 1.6987 * 10^(4)\; \rm C \end{aligned}/.

Avogadro's number:
N_A \approx 6.02 * 10^(23)\; \rm mol^(-1).

Elementary charge:
e \approx 1.602 * 10^(-19)\; \rm C.

Calculate the quantity of
\rm Ag atoms to reduce:


\begin{aligned}& n({\rm Ag}) \\ &= \frac{m({\rm Ag})}{M({\rm Ag})} \\ &= (19\; \rm g)/(107.868\; \rm g \cdot mol^(-1)) \\ & \approx 0.176\; \rm mol\end{aligned}.

By the equation, it takes one electron to reduce every
\rm Ag atom. Thus, the number of electrons required to reduce
0.176\; \rm mol of
\rm Ag\! atoms would be:


n(e) = n({\rm Ag}) \approx 0.176\; \rm mol.


\begin{aligned}N(e) &= n(e) \cdot N_(A). \\ &\approx 0.176\; \rm mol * 6.02 * 10^(23)\; \rm mol^(-1) \\ & \approx 1.06 * 10^(23)\end{aligned}.

Calculate the amount of charge (in coulombs) in that many electrons:


\begin{aligned}Q &= e\, (n(e)) \\ &\approx 1.602 * 10^(-19)\; \rm C * 1.06 * 10^(23) \\ &\approx 16987.1 \; \rm C \end{aligned}.

A current of
1\; \rm A carries a charge of
1\; \rm C every second. Thus, the amount of time required for this current to carry that much electron would be:"


\begin{aligned}t &= (Q)/(I) \\ &\approx (16987.1\; \rm C)/(3.4\; \rm A) \\ &\approx 83.3\; \rm s \\ &\approx 5.00* 10^(3)\; \rm s \\ &\approx 83\; \text{minutes} \end{aligned}.

User SamIAmHarris
by
3.3k points