Answer:
A. y = x^2 − 1
Explanation:
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
−
1
)
Focus:
(
0
,
−
3
4
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
5
4
x
y
−
2
3
−
1
0
0
−
1
1
0
2
3
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
−
1
)
Focus:
(
0
,
−
7
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
9
8
x
y
−
2
7
−
1
1
0
−
1
1
1
2
7
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
1
)
Focus:
(
0
,
3
2
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
1
2
x
y
−
2
3
−
1
3
2
0
1
1
3
2
2
3
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
1
)
Focus:
(
0
,
9
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
7
8
x
y
−
2
9
−
1
3
0
1
1
3
2
9