Answer:
D. y = 3x^2 − 2
Explanation:
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
0
,
2
)
Focus:
(
0
,
23
12
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
25
12
x
y
−
2
−
10
−
1
−
1
0
2
1
−
1
2
−
10
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
−
3
)
Focus:
(
0
,
−
23
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
25
8
x
y
−
2
5
−
1
−
1
0
−
3
1
−
1
2
5
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
−
2
)
Focus:
(
0
,
−
15
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
17
8
x
y
−
2
6
−
1
0
0
−
2
1
0
2
6
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
−
2
)
Focus:
(
0
,
−
23
12
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
25
12
x
y
−
2
10
−
1
1
0
−
2
1
1
2
10