82.3k views
4 votes

\tiny \displaystyle \bf \red{\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) ( \alpha + \beta + \gamma + \theta - \eta)/(\alpha + \beta + \gamma + \theta + \eta) \: d \alpha d \beta d \gamma d \theta d \eta}

Cʜᴀʟʟᴇɴɢᴇ❤️❤️❤️❤️❤️​

2 Answers

3 votes

Answer:

I = 96/10 = 96:10 is your correct answer.

User Nouptime
by
4.3k points
3 votes

Explanation:


\displaystyle \sf \red{I=\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) ( \alpha + \beta + \gamma + \theta - \eta)/(\alpha + \beta + \gamma + \theta + \eta) \: d \alpha d \beta d \gamma d \theta d \eta}

According to symmetry


\displaystyle \sf \red{I=\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) ( \alpha + \beta + \gamma - \theta + \eta)/(\alpha + \beta + \gamma + \theta + \eta) \: d \alpha d \beta d \gamma d \theta d \eta}


\displaystyle \sf \red{I=\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) ( \alpha + \beta - \gamma + \theta + \eta)/(\alpha + \beta + \gamma + \theta + \eta) \: d \alpha d \beta d \gamma d \theta d \eta}


\displaystyle \sf \red{I=\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) ( \alpha - \beta + \gamma + \theta + \eta)/(\alpha + \beta + \gamma + \theta + \eta) \: d \alpha d \beta d \gamma d \theta d \eta}


\displaystyle \sf \red{I=\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) ( - \alpha + \beta + \gamma + \theta + \eta)/(\alpha + \beta + \gamma + \theta + \eta) \: d \alpha d \beta d \gamma d \theta d \eta}

Take sum of 5 integrals


\displaystyle \sf \green{5I=\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) ( 3(\alpha + \beta + \gamma + \theta + \eta))/(\alpha + \beta + \gamma + \theta + \eta) \: d \alpha d \beta d \gamma d \theta d \eta}


\displaystyle \sf \pink{5I=3\int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \int^(3)_(1) \: d \alpha d \beta d \gamma d \theta d \eta}</p><p>


\large \sf \green{5I=3( {2)}^(5) }


\large \sf \pink{I={ (96)/(5) }^{} }

User Graham Lea
by
4.5k points