213k views
4 votes
3(2x - 1) ≥ 2(2x + 3), where x ∈ I​

1 Answer

2 votes


\large\underline{\sf{Solution-}}

Given:


\rm 3(2x-1)\geq2(2x+3), x\in\mathbb{I}


\rm\longmapsto 6x-3\geq 4x+6


\rm\longmapsto 6x-3-4x\geq 4x+6-4x


\rm\longmapsto 2x-3\geq 6


\rm\longmapsto 2x-3+3\geq 6+3


\rm\longmapsto 2x\geq 9


\rm\longmapsto (2x)/(2)\geq (9)/(2)


\rm\longmapsto x\geq 4(1)/(2), x\in\mathbb{I}


\large\underline{\sf{Answer-}}

Therefore:


\rm x=\{5,6,7,8,...\infty\}\\

User Cgrand
by
5.4k points