192k views
1 vote
How do I determine z ∈ C:


((3-2i)/(1+i) - (5+3i)/(1+2i) )z = (1)/(2) - (2)/(5)i

User Aleksandrs
by
7.4k points

1 Answer

0 votes

Simplify the coefficient of z on the left side. We do this by rationalizing the denominators and multiplying them by their complex conjugates:


(3-2i)/(1+i) - (5+3i)/(1+2i) = (3-2i)/(1+i)\cdot(1-i)/(1-i) - (5+3i)/(1+2i)\cdot(1-2i)/(1-2i)


(3-2i)/(1+i) - (5+3i)/(1+2i) = ((3-2i)(1-i))/(1-i^2) - ((5+3i)(1-2i))/(1-(2i)^2)


(3-2i)/(1+i) - (5+3i)/(1+2i) = (3 - 2i - 3i + 2i^2)/(1-(-1)) - (5 + 3i - 10i - 6i^2)/(1-4(-1))


(3-2i)/(1+i) - (5+3i)/(1+2i) = \frac{3 - 5i + 2(-1)}2 - \frac{5 - 7i - 6(-1)}5


(3-2i)/(1+i) - (5+3i)/(1+2i) = \frac{1 - 5i}2 - \frac{11 - 7i}5


(3-2i)/(1+i) - (5+3i)/(1+2i) = \frac{1 - 5i}2\cdot\frac55 - \frac{11 - 7i}5\cdot\frac22


(3-2i)/(1+i) - (5+3i)/(1+2i) = (5 - 25i - 22 + 14i)/(10)


(3-2i)/(1+i) - (5+3i)/(1+2i) = -(17 + 11i)/(10)

So, the equation is simplified to


-(17+11i)/(10) z = \frac12 - \frac{2i}5

Let's combine the fractions on the right side:


\frac12 - \frac{2i}5 = \frac12\cdot\frac55 - \frac{2i}5\cdot\frac22


\frac12 - \frac{2i}5 = (5-4i)/(10)

Then


-(17+11i)/(10) z = (5-4i)/(10)

reduces to


-(17+11i) z = 5-4i

Multiply both sides by -1/(17 + 11i) :


(-(17+11i))/(-(17+11i)) z = (5-4i)/(-(17+11i))


z = -(5-4i)/(17+11i)

Finally, simplify the right side:


-(5-4i)/(17+11i) = -(5-4i)/(17+11i) \cdot (17-11i)/(17-11i)


-(5-4i)/(17+11i) = -((5-4i)(17-11i))/(17^2-(11i)^2)


-(5-4i)/(17+11i) = -(85 - 68i - 55i + 44i^2)/(289-121(-1))


-(5-4i)/(17+11i) = -(85 - 68i - 55i + 44(-1))/(410)


-(5-4i)/(17+11i) = -(41 - 123i)/(410)


-(5-4i)/(17+11i) = -(41 - 41\cdot3i)/(410)


-(5-4i)/(17+11i) = -(1 - 3i)/(10)

So, the solution to the equation is


z = -(1-3i)/(10) = \boxed{-\frac1{10} + \frac3{10}i}

User Royer Vazquez
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories