60.5k views
8 votes
A line contains the points (-6, -4) and (0,4). What is the equation of this

line in slope-intercept form?
4
OA) y=3*+
x+4
(
4
OB) y=
3
ОВ)
X-4
OC) y=x-4
OD) y=x+4

A line contains the points (-6, -4) and (0,4). What is the equation of this line in-example-1
User Pepe N O
by
4.7k points

2 Answers

10 votes

Answer:

A)
y=(4)/(3)x+4

Explanation:

Write the slope formula:


m=(y_2-y_1)/(x_2-x_1)

________________________________________________________

Substitute and calculate


Substitute:
x_1=-6\\ x_2=0\\ y_1=-4\\ y_2=4
into\ m=(y_2-y_1)/(x_2-x_1)

Substitute


m=(4-(-4))/(-(-6))

Determine the sign


m=(4+4)/(6)

Calculate the sum or difference


m=(8)/(6)

Cross out the common factor


m=(4)/(3)

________________________________________________________

Substitute and calculate


Substitute
m=(4)/(3)\\ x=-6\\ y=-4
into\ y=mx+b

Substitute


-4=(4)/(3)*(-6)+b

Reduce the expression to the lowest term


-4=-4*2+b

Calculate the product or quotient


-4=-8+b

Rearrange variables to the left side of the equation


-b=-8+4

Calculate the sum or difference


-b=-4

Divide both sides of the equation by the coefficient of variable


b=4

________________________________________________________

Substitute


Substitute
y=(4)/(3)x+4\\ m=(4)/(3)
into\ y=mx+b:


y=(4)/(3)x+4

________________________________________________________

Rewrite the equation of the line


Rewrite\ y=(4)/(3)x+4\ in\ slope-intercept\ form:


y=(4x)/(3)+4

I hope this helps you

:)

User Christian Horsdal
by
5.6k points
4 votes

As y=4x−2 can be written as y=4x+(−2) . Hence, it's slope is 4 and intercept on y -axis is −2

User Noahdotgansallo
by
4.8k points