Parameterize S in cylindrical coordinates by the vector function
r(u, v) = (x(u, v), y(u, v), z(u, v))
with
x(u, v) = u cos(v)
y(u, v) = u sin(v)
z(u, v) = 36 - u²
with 0 ≤ u ≤ 3 and 0 ≤ v ≤ 2π. Take the normal vector to S to be
![\vec n = (\partial r)/(\partial u) * (\partial r)/(\partial v) = (2u^2\cos(v),2u^2\sin(v),u)](https://img.qammunity.org/2022/formulas/sat/high-school/gtrl6u9pu1gd615o460bkn9hf80lqr26hf.png)
so that the surface element is
![dS = \|\vec n\| \, du\,dv = u √(1+4u^2)\, du\, dv](https://img.qammunity.org/2022/formulas/sat/high-school/5xy30llp9nzzws7cxbrkvo5ywaz34t8yr3.png)
Then the surface integral is
![\displaystyle \iint_S y^2\,ds = \int_0^(2\pi) \int_0^3 u√(1+4u^2) \, du\, dv](https://img.qammunity.org/2022/formulas/sat/high-school/zj6vp39ig2nyzc1p0x1t1i4uihtm0dpshy.png)
![\displaystyle \iint_S y^2\,ds = 2\pi \int_0^3 u√(1+4u^2) \, du](https://img.qammunity.org/2022/formulas/sat/high-school/sxevrhqxc258w85ulk3f6j3v2it84audqa.png)
![\displaystyle \iint_S y^2\,ds = \frac{2\pi}8 \int_0^3 8u√(1+4u^2) \, du](https://img.qammunity.org/2022/formulas/sat/high-school/uzj5r85lrgu2nq9x9erm01p7glw0r57s0d.png)
![\displaystyle \iint_S y^2\,ds = \frac\pi4 \int_0^3 √(1+4u^2) \, d(1+4u^2)](https://img.qammunity.org/2022/formulas/sat/high-school/pv990tiaztgf8xh5xafdyxe8yr7xwbw3s5.png)
![\displaystyle \iint_S y^2\,ds = \frac\pi4 \cdot \frac23(1+4u^2)^(\frac32) \bigg|_0^3 = \boxed{\frac\pi6 \left(37^(\frac32)-1\right)}](https://img.qammunity.org/2022/formulas/sat/high-school/m87rlfdmdzcytg6nndytbbzfdre5y6na77.png)