![\int {12x+5} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/r4u2rbypho48kf4pp3cw6p1rovzta93xti.png)
For this problem, let's first apply the intergral sum rule.
![\int {12x+5} \, dx = \int{12x} \, dx + \int{5}x \,dx](https://img.qammunity.org/2022/formulas/mathematics/college/su7ru0h2vippdjm3pzsan44ittfoumsnkw.png)
Then, we'll use the reverse power rule on each of these integrals.
![\int{12x} \,dx = 6x^2+C](https://img.qammunity.org/2022/formulas/mathematics/college/ed8ct90f7auo7do25ekrdusqywy41cu0sx.png)
![\int{5} \,dx = 5x+C](https://img.qammunity.org/2022/formulas/mathematics/college/x8wks751kk8r1aeq65a28spbmjftyy2kfu.png)
So the indefinite integral of
is
.
Remember that we need our constant of integration,
, because of if we take the derivative of a constant, it'll be 0.
Hope this helps!