126k views
2 votes
Find the derivative of (Cosx/1+sinx)^5​

User Nicolabo
by
4.3k points

1 Answer

2 votes

Use the Chain Rule:


(d)/(dx) [f(g(x))] = f'(g(x)) * g'(x)

Given Information:


f(x) = x^5\\ g(x) = (cos(x))/(1) +sin(x)\\ f(g(x)) = ( (cos(x))/(1) +sin(x))^5\\ \\ f'(x)=5x^4\\ g'(x)=(-sin(x))/(1) + cos(x)\\f'(g(x))*g'(x)=5((cosx))/(1) + sin(x))^4*((-sin(x))/(1) + cos(x))

The answer is:


5((cosx))/(1) + sin(x))^4*((-sin(x))/(1) + cos(x))

User Smilexu
by
4.5k points