Answer:
Explanation:
2)f(x) = 2x² +4x - 3
a = 2 ; b = 4 ; c = -3
1) Put x = -1 in the equation
f(x) = 2*(-1)² + 4*(-1) -3 = 2 - 4 -3 = -5
Vertex = (-1,-5)
2) Upward
3) Minimum
4) axis of symmetry = -b/2a = -4/2*2=-4/4= -1
x = -1
5) domain: all real numbers (-∞ ,∞)
Range : y ≥ -5 ; [-5 , ∞)
3) f(x) = 3x² - 6x + 4
Vertex : (1,1)
Opening : upward
Minimum
Axis of symmetry: x = 1
Domain: all real numbers
Range: y ≥ 1 ; [1, ∞)
4)f(x) = -x² - 2x - 3
a) Vertex: f(x) = -(-1)² - 2*(-1) - 3 = -1 + 2 - 3 = -2
Vertex( -1,-2)
b) downward
c) Maximum
d) Axis of symmetry: x = 2/-2 = -1
x = -1
e) Domain: all real numbers
Range: y ≤ -2 ; (-∞ , -2]
5)f(x) = 2(x -2)²
a) Vertex: (2, 0)
b) Opening: upward
c) Minimum
d) x = 2
e)Domain: all real numbers
Range: y ≥ 0 ; [0,∞)