178k views
24 votes
Find A1 in a geometric series for which sn=3045,r=2/5, and an=120

User IceWhisper
by
5.0k points

1 Answer

5 votes

Answer:

a = 1875

Explanation:

Sum of geometric series formula:


S_n=(a(1-r^n))/(1-r)

Geometric series formula:


a_n=ar^(n-1)

Given:


  • S_n=3045

  • r=\frac25=0.4

  • a_n=120


\implies 120=a(0.4)^(n-1)


\implies a=(120)/((0.4)^(n-1))


\implies 3045=(a(1-0.4^n))/(1-0.4)


\implies 3045=(a(1-0.4^n))/(0.6)


\implies 1827=a(1-0.4^n)


\implies a=(1827)/(1-0.4^n)

Equate equations for a:


\implies (120)/((0.4)^(n-1))=(1827)/(1-0.4^n)

Apply exponent rule
a^(b-c)=(a^b)/(a^c)


\implies (120)/((0.4^n)/(0.4^1))=(1827)/(1-0.4^n)


\implies (48)/(0.4^n)=(1827)/(1-0.4^n)


\implies 48(1-0.4^n)=1827(0.4^n)


\implies 48-48(0.4^n)=1827(0.4^n)


\implies 48=1875(0.4^n)


\implies 0.4^n=(48)/(1875)


\implies 0.4^n=0.0256

Taking natural logs:


\implies \ln0.4^n=\ln0.0256


\implies n\ln0.4=\ln0.0256


\implies n=(\ln0.0256)/(\ln0.4)


\implies n=4

Substituting found value for n into one of the equations and solving for a:


\implies a=(120)/((0.4)^(4-1))


\implies a=(120)/(0.4^3)


\implies a=(120)/(0.064)


\implies a=1875

User Zakharov Roman
by
4.1k points