193k views
3 votes
For the following exercises, use logarithmic differentiation to find dy/dx.

For the following exercises, use logarithmic differentiation to find dy/dx.-example-1
User Biesior
by
4.5k points

1 Answer

5 votes

If
y=x^(\log_2(x)), then taking the logarithm of both sides gives


\ln(y) = \ln\left(x^(\log_2(x))\right) = \log_2(x) \ln(x)

Differentiate both sides with respect to x :


(d\ln(y))/(dx) = (d\log_2(x))/(dx)\ln(x) + \log_2(x)(d\ln(x))/(dx)


\frac1y (dy)/(dx) = (d\log_2(x))/(dx)\ln(x) + (\log_2(x))/(x)

Now if
z=\log_2(x), then
2^z=x. Rewrite


2^z = e^(\ln(2^z)) = e^(\ln(2)z)

Then by the chain rule,


(d2^z)/(dx) = (dx)/(dx)


(de^(\ln(2)z))/(dx) = 1


e^(\ln(2)z) \ln(2) (dz)/(dx)= 1


(dz)/(dx) = (1)/(e^(\ln(2)z)\ln(2))


(dz)/(dx) = (1)/(2^z \ln(2))


(d\log_2(x))/(dx) = (1)/(\ln(2)x)

So we have


\frac1y (dy)/(dx) = (\ln(x))/(\ln(2)x)+ (\log_2(x))/(x)


\frac1y (dy)/(dx) = (\log_2(x))/(x)+ (\log_2(x))/(x)


\frac1y (dy)/(dx) = (2\log_2(x))/(x)


\frac1y (dy)/(dx) = (\log_2(x^2))/(x)


(dy)/(dx) = (y\log_2(x^2))/(x)

Replace y :


(dy)/(dx) = (x^(\log_2(x))\log_2(x^2))/(x)


(dy)/(dx) = x^(\log_2(x)-1)\log_2(x^2)

User Thisisnabi
by
3.8k points