29.8k views
2 votes
Prouvez par récurrence que quel que soit n EN\{0}, on a

1/1.2 + 1/2.3 + …. + 1/ n.(n+1) v= 1- 1/n+1

1 Answer

5 votes

The left side is equivalent to


\displaystyle \sum_(k=1)^n \frac1{k(k+1)}

When n = 1, we have on the left side


\displaystyle \sum_(k=1)^1 \frac1{k(k+1)} = \frac1{1\cdot2} = \frac12

and on the right side,


1 - \frac1{1+1} = 1 - \frac12 = \frac12

so this case holds.

Assume the equality holds for n = N, so that


\displaystyle \sum_(k=1)^N \frac1{k(k+1)} =1 - \frac1{N+1}

We want to use this to establish equality for n = N + 1, so that


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - \frac1{N+2}

We have


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = \sum_(k=1)^N \frac1{k(k+1)} + \frac1{(N+1)(N+2)}


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - \frac1{N+1} + \frac1{(N+1)(N+2)}


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - (N+2)/((N+1)(N+2)) + \frac1{(N+1)(N+2)}


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - (N+1)/((N+1)(N+2))


\displaystyle \sum_(k=1)^(N+1) \frac1{k(k+1)} = 1 - \frac1{N+2}

and this proves the claim.

User Jtate
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories