An ellipse has the general equation
(x/a)² + (y/b)² = 1
(actually, this is an ellipse whose semimajor and -minor axes are parallel to the x- and y-axes, but one can rotate any ellipse so that it has the same configuration, and the area remains constant)
Convert to a kind of rescaled polar coordinates, using
x = a r cos(t)
y = b r sin(t)
Then the interior of such an ellipse is the set
E = {(r, t) : 0 ≤ r ≤ 1 and 0 ≤ t ≤ 2π}
The area of E is then given by the integral
![\displaystyle \iint_E dA](https://img.qammunity.org/2022/formulas/mathematics/high-school/9d0f871a97uzqsqtpqawaehh8ygxht69xt.png)
Compute the Jacobian determinant for this change of coordinates. The Jacobian is
![J = \begin{bmatrix}x_r & x_t \\ y_r & y_t\end{bmatrix} = \begin{bmatrix}a \cos(t) & -a r \sin(t) \\ b \sin(t) & b r \cos(t)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/arlawp7nqgynx3nmx9jjlij9p16pr8gubc.png)
Then we have Jacobian determinant
|det(J)| = |a b r cos²(t) + a b r sin²(t)| = |a b r| = |a b| r
since r ≥ 0.
The area of E is then
![\displaystyle \iint_E dA = \iint_E |ab| r \, dr \, dt](https://img.qammunity.org/2022/formulas/mathematics/high-school/jbjt7bn2aebm4qkcga47q3qj263no5j9gk.png)
![\displaystyle \iint_E dA = \int_0^(2\pi) \int_0^1 |ab| r \, dr \, dt](https://img.qammunity.org/2022/formulas/mathematics/high-school/meq9nbj8pkobi6jj9vtwgmsm43e3wqfxe3.png)
![\displaystyle \iint_E dA = 2\pi |ab| \int_0^1 r \, dr](https://img.qammunity.org/2022/formulas/mathematics/high-school/uo4ho9viwhxoznrx9e748k2hdw970spbz9.png)
![\displaystyle \iint_E dA = \boxedab](https://img.qammunity.org/2022/formulas/mathematics/high-school/oetqqa9zq8qj3ixijdcf1acj54g3xkzqfk.png)