128k views
1 vote
Show that the function is always increasing


\sf{f(x) = log(1 + x) - (2x)/(x + 2)f(x)=log(1+x)−x+22x​}\ \textless \ br /\ \textgreater \ ​
ᑎO Տᑭᗩᗰ ᑭᒪᗴᗩՏᗴ​

User Tehziyang
by
4.3k points

1 Answer

6 votes

Answer:

Explanation:


\large\underline{\sf{Solution-}}

☼︎~Given function is


\rm \: f(x) = log(1 + x) - (2x)/(x + 2)

~Let first define the domain of f(x).


{ \underline { \underline{ {\rule{200cm}{0.4cm}}}}}

  • Now, log(1 + x) is defined when x + 1 > 0

☼︎~Now, Consider


\sf \: f(x) = log(1 + x) - (2x)/(x + 2)

☼︎~On differentiating both sides

w. r. t. x, we get


\rm {\: \longmapsto(d)/(dx)f(x) =(d)/(dx)\bigg[ log(1 + x) - (2x)/(x + 2)}

☼︎~We know,


\boxed{\sf{ \longmapsto(d)/(dx)logx \: = \: (1)/(x)}}

❀And


\boxed{\sf{\longmapsto (d)/(dx) (u)/(v) = \frac{v(d)/(dx)u \: - \: u(d)/(dx)v}{ {v}^(2) } \: }}

~So, using these results, we get


\sf {\:\longmapsto f'(x) = (1)/(x + 1) - \frac{(x + 2)(d)/(dx)2x - 2x(d)/(dx)(x + 2)}{ {(x + 2)}^(2) }}

☼︎~We know,


\boxed{\rm{\longmapsto (d)/(dx)x = \sf \pink{ 1 \:} }}

And-


\begin{gathered}\boxed{\sf{\longmapsto(d)/(dx)k = 0 \: }} \\ \end{gathered}

☼︎~So, using this result, we get


\rm \: f'(x) = (1)/(x + 1) - \frac{(x + 2)2 - 2x(1 + 0)}{ {(x + 2)}^(2) }f′(x)=x+11−(x+2)2(x+2)2−2x(1+0)</strong></p><p><strong>[tex]\rm \: f'(x) = (1)/(x + 1) - \frac{(x + 2)2 - 2x(1 + 0)}{ {(x + 2)}^(2) }f′(x)=x+11−(x+2)2(x+2)2−2x(1+0)\rm \: f'(x) = (1)/(x + 1) - \frac{2x + 4 - 2x}{ {(x + 2)}^(2) }


\rm \: f'(x) = (1)/(x + 1) - \frac{4 }{ {(x + 2)}^(2) }f′(x)=x+11−(x+2)24


\rm \: f'(x) = \frac{ {(x + 2)}^(2) - 4(x + 1)}{(x + 1) {(x + 2)}^(2) }


\rm \: f'(x) = \frac{ {x}^(2) + 4 + 4x - 4x - 4}{(x + 1) {(x + 2)}^(2) }


\rm \: f'(x) = \frac{ {x}^(2) }{(x + 1) {(x + 2)}^(2) }

☼︎~Now, as


\longmapsto\rm {\: {x}^(2) \geqslant 0x2⩾0}


</strong><strong>\longmapsto\sf\</strong><strong>:</strong><strong>{(x+2)}^(2) > 0


\longmapsto\sf\: x + 1 > 0x+1>0

☼︎~So,


\sf\longmapsto \:\rm \: f'(x) = \frac{ {x}^(2) }{(x + 1) {(x + 2)}^(2) } \geqslant 0

☼︎~Therefore,

  • f'(x) is always increasing when x > - 1


{ \underline { \underline{ \bold {\rule{200cm}{0.4cm}}}}}

Additional Information:-


\boxed{\begin{array}c \bf f(x) &amp; \tt (d)/(dx)f(x) \\ \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf - \: sinx \\ \\ \sf tanx &amp; \sf {sec}^(2)x \\ \\ \sf cotx &amp; \sf - {cosec}^(2)x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf - \: cosecx \: cotx\\ \\ \sf √(x) &amp; \sf (1)/(2 √(x) ) \\ \\ \sf logx &amp; \sf (1)/(x)\\ \\ \sf {e}^(x) &amp; \sf {e}^(x) \end{array}}


{ \underline { \underline{ \bold {\rule{200cm}{0.3cm}}}}}

User Muhfred
by
4.3k points