153k views
0 votes
Using Euler’s formular obtain trigonometric formulars for cos(1 + 2) and sin(1 + 2).

User Nobinobiru
by
6.1k points

1 Answer

2 votes

Explanation:

Ruler's formula states that


e^(i\theta) = cos(\theta) +isin(\theta)

We also know that


e^(i\theta_1) \cdot e^(i\theta_2) = e^(i(\theta_1+\theta_2))

therefore,


e^(i(\theta_1+\theta_2))= cos((\theta_1+\theta_2))+ sin((\theta_1+\theta_2)) (1)

Similarly, we can write


e^(-i(\theta_1+\theta_2)) = cos((\theta_1+\theta_2)) - sin((\theta_1+\theta_2)) (2)

Adding Eqn(1) and Eqn(2) together, we get


2cos((\theta_1+\theta_2)) = e^(i(\theta_1+\theta_2)) + e^(-i(\theta_1+\theta_2))

or


cos((\theta_1+\theta_2)) = (e^(i(\theta_1+\theta_2)) + e^(-i(\theta_1+\theta_2)))/(2)

To get the expression for the sine function, we subtract Eqn(2) from Eqn(1) to get


2isin((\theta_1+\theta_2)) = e^(i(\theta_1+\theta_2)) - e^(-i(\theta_1+\theta_2))

or


sin((\theta_1+\theta_2)) = (e^(i(\theta_1+\theta_2)) - e^(-i(\theta_1+\theta_2)))/(2i)

User Tim Merrifield
by
6.2k points