190k views
2 votes
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​

User Rophuine
by
5.0k points

1 Answer

2 votes

Prove that:


\:\:\sf\:\:\left((b^2-c^2)/(a)\right)\cos A+\left((c^2-a^2)/(b)\right)\cos B +\left((a^2-b^2)/(c)\right)\cos C=0

Proof:

We know that, by Law of Cosines,


  • \sf \cos A=(b^2+c^2-a^2)/(2bc)

  • \sf \cos B=(c^2+a^2-b^2)/(2ca)

  • \sf \cos C=(a^2+b^2-c^2)/(2ab)

Taking LHS


\left((b^2-c^2)/(a)\right)\cos A+\left((c^2-a^2)/(b)\right)\cos B +\left((a^2-b^2)/(c)\right)\cos C

Substituting the value of cos A, cos B and cos C,


\longmapsto\left((b^2-c^2)/(a)\right)\left((b^2+c^2-a^2)/(2bc)\right)+\left((c^2-a^2)/(b)\right)\left((c^2+a^2-b^2)/(2ca)\right)+\left((a^2-b^2)/(c)\right)\left((a^2+b^2-c^2)/(2ab)\right)


\longmapsto\left(((b^2-c^2)(b^2+c^2-a^2))/(2abc)\right)+\left(((c^2-a^2)(c^2+a^2-b^2))/(2abc)\right)+\left(((a^2-b^2)(a^2+b^2-c^2))/(2abc)\right)


\longmapsto\left(((b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2))/(2abc)\right)+\left(((c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2))/(2abc)\right)+\left(((a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2))/(2abc)\right)


\longmapsto\left(((b^4-c^4)-(a^2b^2-a^2c^2))/(2abc)\right)+\left(((c^4-a^4)-(b^2c^2-a^2b^2))/(2abc)\right)+\left(((a^4-b^4)-(a^2c^2-b^2c^2))/(2abc)\right)


\longmapsto(b^4-c^4-a^2b^2+a^2c^2)/(2abc)+(c^4-a^4-b^2c^2+a^2b^2)/(2abc)+(a^4-b^4-a^2c^2+b^2c^2)/(2abc)

On combining the fractions,


\longmapsto((b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2))/(2abc)


\longmapsto(b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2)/(2abc)

Regrouping the terms,


\longmapsto((a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2))/(2abc)


\longmapsto((0)+(0)+(0)+(0)+(0)+(0))/(2abc)


\longmapsto(0)/(2abc)


\longmapsto\bf 0=RHS

LHS = RHS proved.

User Ajay Singh Beniwal
by
4.9k points