154k views
5 votes

\sf \bf \orange{Prove \: \bf \red{That:}}


\sf\left((x^(a^2+b^2))/(x^(ab))\right)^(a+b)\left((x^(b^2+c^2))/(x^(bc))\right)^(b+c)\left((x^(c^2+a^2))/(x^(ca))\right)^(c+a)=x^(2\left(a^3+b^3+c^3\right))

No Spam:)











Thank You!​

User Bemeyer
by
8.4k points

1 Answer

1 vote


\sf\left((x^(a^2+b^2))/(x^(ab))\right)^(a+b)\left((x^(b^2+c^2))/(x^(bc))\right)^(b+c)\left((x^(c^2+a^2))/(x^(ca))\right)^(c+a) \\ = {x}^{ ({a}^(2) + {b}^(2) - ab)(a + b)} \: \: {x}^{ ({b}^(2) + {c}^(2) - bc)( b + c)} \: \: {x}^{ ({c}^(2) + {a}^(2) - ca)(c + a)} \\ = {x}^{ {a}^(3) + {b}^(3 ) - {a}^(2)b + {a}^(2) b + {b}^(3) - a {b}^(2) } \: \: {x}^{ {b}^(3) + {c}^(3 ) - {b}^(2)c + {b}^(2) c + {c}^(3) - b{c}^(2) } \: \: {x}^{ {c}^(3) + {a}^(3 ) - {c}^(2)a + {c}^(2) a + {c}^(3) - c {a}^(2) } \: \: \\ = {x}^{{a}^(3) + {b}^(3 ) - {a}^(2)b + {a}^(2) b + {b}^(3) - a {b}^(2) + {b}^(3) + {c}^(3 ) - {b}^(2)c + {b}^(2) c + {c}^(3) - b{c}^(2) + {c}^(3) + {a}^(3 ) - {c}^(2)a + {c}^(2) a + {c}^(3) - c {a}^(2)} \\ </p><p> = {x}^{ {a}^(3) + {b}^(3) } \: \: {x}^{ {b}^(3) + {c}^(3) } \: \: {x}^{ {c}^(3) + {a}^(3) } \\ = {x}^{{a}^(3) + {b}^(3) + {b}^(3) + {c}^(3) + {c}^(3) + {a}^(3)} </p><p> \\ = {x}^{2 {a}^(3) + 2 {b}^(3) + 2 {c}^(3) } \\ = {x}^{2( {a}^(3) + {b}^(3) + {c}^(3) }

Hope you could get an idea from here.

Doubt clarification - use comment section.

User Keval Trivedi
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories