Answer:
![\sf x=√(6) +4](https://img.qammunity.org/2022/formulas/mathematics/high-school/saiqm91twstx6mefqz3hfbj9qxa0eecqbl.png)
![\sf x=4-√(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4hcfpota88x8awzfexj5f6mykir7o9h0gr.png)
Explanation:
![\sf x^2-8x+10=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ca0zqo9ccj0fglsprmnym54z038i9816cy.png)
Equations of the form ax^2+bx+c=0 can be solved by the quadratic formula:
![\boxed{\sf \cfrac{-b\pm √(b^2-4ac)}{2a}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/235gaxubcrhh34oualbqepxeeotyf89wgy.png)
Quadratic formula gives you two solutions one when (±) addition and one when (±) is a subtraction:
![\sf x^2-8x+10=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ca0zqo9ccj0fglsprmnym54z038i9816cy.png)
Substitute:
![a:1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ryt6gv1ke04o2xddxik7e61fbt8k5fjgk1.png)
![b:-8](https://img.qammunity.org/2022/formulas/mathematics/high-school/2xucux3q1a6d2rq0frixqe5nc8uxhr6qzk.png)
![c:10](https://img.qammunity.org/2022/formulas/mathematics/high-school/62rcscjro24bhh621jiudne120f5g6x7qx.png)
![\sf x=\cfrac{-\left(-8\right)\pm √(\left(-8\right)^2-4* \:1\cdot \:10)}{2* \:1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/q1ehl3hr857tosqb8hqklfuasx6xtrbb4r.png)
Square -8, and multiply -4 by 10:
![\sf x=\cfrac{(-8)\pm√(64-40) }{2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vk7lf2zblcgowz1q319a0oqmk6666re3g3.png)
Add 64 and - 40, and take the square root of 24:
![\sf x=\cfrac{-(-8)\pm2√(6) }{2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/d507s87pia9fgmepotcvdvrhz5y3nzjfbt.png)
-(-8)= 8
![\sf x=\cfrac{8\pm2√(6) }{2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/q0va44g3xvgu2ddm33jgi4zcta3cr5aak4.png)
Now solve when (±) is a plus and then solve when it is a minus:-
![\sf x=√(6) +4](https://img.qammunity.org/2022/formulas/mathematics/high-school/saiqm91twstx6mefqz3hfbj9qxa0eecqbl.png)
____________________________