96.8k views
1 vote
(p²qr + pq²r + pqr²)(-pq + qr - pr)
Please solve this problem as soon as possible.​

User Joshweir
by
4.5k points

2 Answers

5 votes


\large\underline{\sf{Solution-}}

Given that:


\sf\longmapsto(p^2qr+pq^2r+pqr^2)(-pq+qr-pr)

Opening the brackets,


\sf\longmapsto p^2qr(-pq+qr-pr) + pq^2r(-pq+qr-pr) + pqr^2(-pq+qr-pr)

Opening the next brackets,


\sf\longmapsto p^2qr(-pq)+ p^2qr(qr)- p^2qr(pr) + pq^2r(-pq)+ pq^2r(qr)- pq^2r(pr) + pqr^2(-pq)+ pqr^2(qr)- pqr^2(pr)

So,


\sf\longmapsto -p^3q^2r+ p^2q^2r^2- p^3qr^2 - p^2q^3r+ pq^3r^2- p^2q^2r^2-p^2q^2r^2+ pq^2r^3- p^2qr^3


\sf\longmapsto -p^3q^2r- p^3qr^2 - p^2q^3r+ pq^3r^2+ pq^2r^3- p^2qr^3+ p^2q^2r^2-2p^2q^2r^2


\sf\longmapsto -p^3q^2r- p^3qr^2 - p^2q^3r+ pq^3r^2+ pq^2r^3- p^2qr^3- p^2q^2r^2

Hence, the product is,


\longmapsto\bf -p^3q^2r- p^3qr^2 - p^2q^3r- p^2qr^3+ pq^3r^2+ pq^2r^3 - p^2q^2r^2

User PaleNeutron
by
5.5k points
3 votes

Answer:

−p3q2r−p3qr2−p2q3r−p2q2r2−p2qr3+pq3r2+pq2r3

Explanation:

(p2qr+pq2r+pqr2)((−p)(q)+qr+−pr)

(p2qr)((−p)(q))+(p2qr)(qr)+(p2qr)(−pr)+(pq2r)((−p)(q))+(pq2r)(qr)+(pq2r)(−pr)+(pqr2)((−p)(q))+(pqr2)(qr)+(pqr2)(−pr)

−p3q2r+p2q2r2−p3qr2−p2q3r+pq3r2−p2q2r2−p2q2r2+pq2r3−p2qr3

−p3q2r−p3qr2−p2q3r−p2q2r2−p2qr3+pq3r2+pq2r3

User WarFox
by
4.6k points