207k views
0 votes
Rationalisie the denominator of: 5/√7-√2​

User Pospi
by
3.7k points

2 Answers

4 votes

Answer:


\longmapsto √(7 ) + √(2) .

Explanation:


\sf{\:(5)/(√(7) - √(2))}

By rationalizing the denominator,


=\sf{(5)/(√(7) - √(2))* (√(7) + √(2))/(√(7) + √(7))}


=\sf{(5(√(7) + √(2)))/((√(7) - √(2))(√(7) + √(2)))}


=\sf{(5(√(7) + √(2)))/((√(7))^2 - (√(2))^2)}


=\sf{(5(√(7) + √(2)))/(7 - 2)}


=\sf{(5(√(7) + √(2)))/(5)}


=\sf{\frac{\\ot{5}(√(7) + √(2))}{\\ot{5}}}


\boxed{\underline{\rm{\therefore\:(5)/(√(7) - √(2)) = √(7) + √(2)}}}

User Matt Dowle
by
3.2k points
4 votes


= √(7) + √(2)

in alternate forms


= 4.05996

hope it helps

Rationalisie the denominator of: 5/√7-√2​-example-1
User Ron Tuffin
by
3.2k points