227k views
2 votes
Rationalisie the denominator of: 2/√7+√5​

User Chrs
by
4.2k points

1 Answer

5 votes

Answer:


\longmapsto √(7) - √(5) .

Explanation:


\sf{\:(2)/(√(7) + √(5))}

By rationalizing the denominator,


=\sf{(2)/(√(7) + √(5))* (√(7) - √(5))/(√(7) - √(5))}


=\sf{(2(√(7) - √(5)))/((√(7) + √(5))(√(7) - √(5)))}


=\sf{(2(√(7) - √(5)))/((√(7))^2 - (√(5))^2)}


=\sf{(2(√(7) - √(5)))/(7 - 5)}


=\sf{(2(√(7) - √(5)))/(2)}


=\sf{\frac{\\ot{2}(√(7) - √(5))}{\\ot{2}}}


\boxed{\underline{\rm{\therefore\:(2)/(√(7) + √(5)) = √(7) - √(5)}}}

User Parchambeau
by
4.9k points