Answer:
The cosine rule will be used to identify the angles.
let c = 60, a = 42,and b = 22
a²=b²+c²-2bc.cosA
42²=22²+60²-(2*22*60.cosA)
1764=4084 - 2640.cosA
2640.cosA = 4084 - 1764
cos A = 0.8787
A = 28.5°
b²=a²+c²-2ac.cosB
22²=42²+60²-(2*42*60.cosB)
484=5364-5040.cosB
5040.cosB=5364-484
cosB = 0.9682
B = 14.5°
c²=a²+b²-2ab.cosC
60²=42²+22²-(2*42*22.cosC)
3600=2248 - 1848.cosC
1848.cosC=2248-3600
cosC=-0.7316
C = 137°
From the angles obtained, it shows no angle in the triangle was right-angled, that is, 90°. This triangle wasn't right-angled triangle.