Answer:
38.25 cm²
Explanation:
We use the formula for the length of an arc to find the central angle of the sector of the circle.
Then we use the formula for the area of a sector of a circle to find the area.
Length of arc of circle of radius r:
![s = (n)/(360^\circ)2 \pi r](https://img.qammunity.org/2023/formulas/mathematics/high-school/41g5rik11odog4dchjsiwg35nliof4wv6f.png)
s = arc length
n = measure of the central angle of the sector
![s = (n)/(360^\circ)2 \pi r](https://img.qammunity.org/2023/formulas/mathematics/high-school/41g5rik11odog4dchjsiwg35nliof4wv6f.png)
![8.5~cm = (n)/(360^\circ)2 \pi * 9.0~cm](https://img.qammunity.org/2023/formulas/mathematics/high-school/z1j3wboz8sx1eixqk5e3v6i4iasdjby7go.png)
![n = 54.1^\circ](https://img.qammunity.org/2023/formulas/mathematics/high-school/63hpct3l2vvy4d5s5umlnuc987ahqtprqz.png)
Area of sector of circle of radius r:
![A = (n)/(360^\circ) \pi r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/6wqo9279z8nsna6rktwotij7475ga585jv.png)
A = area of sector of circle
n = measure of the central angle of the sector
![A = (54.1^\circ)/(360^\circ) \pi (9.0~cm)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/j22eo0dm0orammriejbz1tv012iq0cmhso.png)
![A= 38.25~cm^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/9l55pxjm1katu8pif51glwa7iob16e2mw0.png)