150k views
2 votes
1/(2+i)²

Solve this question....​

1 Answer

2 votes


\large\underline{\sf{Solution-}}

Given complex number is


\rm \longmapsto\:\frac{1}{ {(2 + i)}^(2) }


\rm \:  =  \: \frac{1}{4 + {i}^(2) + 2 * 2 * i}


\rm \:  =  \: (1)/(4 - 1 + 4i)


\rm \:  =  \: (1)/(3+ 4i)


\rm \:  =  \: (1)/(3+ 4i) * (3 - 4i)/(3 - 4i)


\rm \:  =  \: \frac{3 - 4i}{ {3}^(2) - {(4i)}^(2) }


\rm \:  =  \: \frac{3 - 4i}{9 -16 {i}^(2) }

We know,


\rm \longmapsto\:\tt{ {i}^(2) \: = \: - \: 1 \: } \\

So, using this, we get


\rm \:  =  \: (3 - 4i)/(9 -16( - 1))


\rm \:  =  \: (3 - 4i)/(9 + 16)


\rm \:  =  \: (3 - 4i)/(25)


\rm \:  =  \: (3)/(25) - (4)/(25)i

User Nad
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories