152k views
5 votes
3+2i/-2+i
Please solve this...​

User Jeremiahs
by
4.5k points

1 Answer

6 votes


\large\underline{\sf{Solution-}}

Given complex number is


\rm \longmapsto\:(3 + 2i)/( - 2 + i)

So, on rationalizing the denominator, we get


\rm \:  =  \: (3 + 2i)/( - 2 + i) * ( - 2 - i)/( - 2 - i)


\rm \:  =  \: \frac{ - 6 - 3i - 4i - {2i}^(2) }{ {( - 2)}^(2) - {i}^(2) }

We know,


\rm \red\longmapsto\:\tt{ {i}^(2) \: = \: - \: 1 \: } \\

So, using this, we get


\rm \:  =  \: ( - 6 - 7i - 2( - 1) )/( 4 - ( - 1))


\rm \:  =  \: ( - 6 - 7i + 2)/( 4 + 1)


\rm \:  =  \: ( - 4 - 7i )/(5)


\rm \:  =  \: - (4)/(5) - (7)/(5) i

User Sakeena
by
4.4k points