130k views
5 votes
If K is the ratio of the roots of the polynomial x²+px-q, the value of k/1+k² is:​

1 Answer

1 vote


\large\underline{\sf{Solution-}}

Given Polynomial:


\rm \longmapsto f(x) = {x}^(2) + px - q

Let α and β be the zeros of f(x)

Then:


\rm \longmapsto \alpha + \beta = - p


\rm \longmapsto \alpha \beta = - q

Now, it's given that:


\rm \longmapsto k = ( \alpha )/( \beta )

Consider the expression given:


\rm = \frac{k}{1 + {k}^(2) }


\rm = \frac{ ( \alpha )/( \beta ) }{1 + { \frac{ \alpha {}^(2) }{ \beta {}^(2) } }}


\rm = \frac{ ( \alpha )/( \beta ) }{ { \frac{ \alpha {}^(2) + { \beta }^(2) }{ \beta {}^(2) } }}


\rm = \frac{ \alpha }{ { \frac{ \alpha {}^(2) + { \beta }^(2) }{ \beta } }}


\rm = \frac{ \alpha \beta }{\alpha {}^(2) + { \beta }^(2) }


\rm = \frac{ \alpha \beta }{ {( \alpha + \beta )}^(2) - 2 \alpha \beta }


\rm = \frac{ - q }{ {p}^(2) + 2q}

User Jon Koeter
by
4.3k points